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A linear formulation is used to study irregular interaction of a moving shock 
wave with a surface of discontinuity separating a gas from a compressible 
liquid occupying a part of the lower half-space bounded by a rectilinear in - 
clined wall, The problem of interaction in the case when the shock wave in 
a gas overtakes weak perturbations in the liquid and the flow behind the shock 
wave is subsonic, was studied in [I]. 

1, Formulation of the problem, The front of a plane shock wave moves along 
a smooth wall at a constant velocity v and emerges, at the instant t = 0, on the 
free surface of a compressible liquid, We investigate the flow in the gas, and in the 

liquid at t > 0. The problem is self-similar and is studied in the linear formulation 
since the shock wave front moves at a high velocity and the parameter & = x, :’ /i, 

( R1 is the gas density behind the shock wave and R’, is the density of the liquid) 
is small. The problem is divided into three distinct problems which are solved in the 
following order. 

Fig. 1 

(a) The problem of motion or liquid acted upon by an unper~rbed pressure P 
behind the shock wave in the gas. Solution of this problem enables us to determine the 

form of the perturbed tangential discontinuity where TJ = ef (5) 

5= X/(a,t), y = Y / (a&) (1.1) 
are the self-similar coordinates (see Fig. 1 ) . 

(b) When the weak perturbations in the liquid propagate faster than the shock 

wave in the gas, a region of perturbed flow exists ahead of the shock wave. The para - 
meters of this flow are determined from the perturbations in the tangential discontinuity 
and in the linear formulation are independent of the gas flow behind the shock wave. 

(c ) The flow in the diffraction region is determined from the known form of the 
tangential discontinuity and from the gas flow parameters in the neighborhood of the 
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diffraction region. 
In each of the above regions the pressure perturbation satisfies the wave equation 

Pxx -I- PYY - a2$+t =o (i=O,l,Z) CL21 

and, in the coordinate system moving at the velocity VI of flow behind the shock 
wave, ai denotes the speed of sound and i indicates the region of flow(see Fig. 1). 

Since the number of parameters is large and the problems listed above are sol- 
ved in a strict sequence t the index accompanying the dimensionless parameters is, in 
general, omitted. 

2, Solution of the problem in hc liquid, When V 6 us , the region of per - 
turbed flow in the Liquid is bounded by the inclined wall, the am ofthe Mach circle with 
the center at the comer point of the wall, and by the tangential discon~nKity . Passing 
first to the self- similar coordinates (1.1) and then to the polar coordinates and applying 
the Chaplygin transformations 

(2.1) 

we transform Eq. (1.2 ) into a Laplace equation in the region (p < 1, -6 < El < 0). 
After this we can write the pressure as the real part of the analytic function 

@(Q=p+iq, 5=E+iq=Pexpi8 (2.21 

where CF is a harmonic function conjtigate to p. 
Just as in the theory of conic flows [2 1, we can obtain the following expression 

for the complex velocity liv = u + iv: 

LV = ; 
I 
‘:&D++D, Ir-->+, u+- (2.3) 

(here and henceforth the arrows indicate an equality to within the notation used 1, Then 
the boundary conditions for the function cf, ( 5) have the form 

1 

~(EO--“UP, O<E<l, V = 0, 
P” -fi<f3<0, f’-1, E”== 

1 -I- 1/l -- zy;2 

0% Xl1 

q -0, O<p<l, 8 == -p, p -+ pia,?R, 

where 6 denotes a unit Heaviside function and x0 = V / @z is the point at which 
the pressure becomes discontinuous. 

Mapping conformally the sector {p < 1, -p ( 0 < 0) of the 5 -plane 
onto the upper half of the plane 0 3 r + io, a = n / fi 

aI =; { t- :” 2 
> 

(;‘zz.<~ when<-c>t)) (2.4) 
\1+<” ’ . 

and carrying out the ~bsff~~~ CD (0) = 61 - o % (0) (fl - cr) = 1 when 
0 = O), we obtain the l&ichlet problem for the function 

p1 = 6 I(1 - 5) 6 --z,)l p ~~ , --~<~<~~, 
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Writing a solution of this problem in the form of the Schwartz integral [3], we 
obtain the analytic function 

The distribution of the vertical velocity component at the interface we find from 
(2.3) -(2.5 1 

(2.6) 

The form of the tangential discontinuity is determined from the solution of the 
differential equation 

d’ (x) - f (x) = -u (x), f (1) = 0 (2.7 1 

which is obtained from the condition of kinematic compatibility at the interface. From 

(2.7 ) it follows that f’ (1) = 0, i.e. the Mach circle wave does not effect the 
smoothness of the interface at the point 2 = 1. 

In a number of cases the distribution of the vertical velocity component at the inter- 
face and the form of the tangential discontinuity can both be obtained in explicit form . 

For examPle,for x0 -< 1 and p = n / 4 we have 

u = --& 
[ 
2arctg 

5 
---- 

I” VI - 2.2 
1 XT - x,,2 ) 

VI -xo2 In _ _ 
(a,, 7/l - 52 + v’l -2202x)2 

f (x) = J& (arctg Z + F 5 
xol/l - .z+ 

-2-t 

1 
ln 1+ Vl - $2 

X 
+ 

Jf(/1 
2% L (x - 3~~) In 1 x2-- xozl + 21n (.xofl - .r2+ V-1 - &h) - 

-- 
2s In 

(1/l - zo3 + VI - 5”) (XI? + (1 - x,,“) z’) __ JJ_I 
1+~l-x”“1/1-z2” I 2l 

In what follows, we shall express the solution of the problem in the gas in terms 
of the second derivative of the function defining the form of the tangential discontinuity 

and given in explicit form for all values of the parameters /3 and zO by (2.6 ) and 

(2.7). When x = s,< 1 , the function u will have a logarithmic singularity 
and f (x) will have a comer point just as in the case of an incompressible fluid ,while 
at x0 >,I the singularity will vanish. Study of the flow of an incompressible fluid 

near the point of pressure discontinuity, using a nonlinear formulation, shows that th x 
perturbed interface has a spiral-like form [4,5]. The interface always departs from 

the comer point of the wall . 
When V > us , a weak wave tangent to the Mach circle arc emerges from 

the point of intersection of the shock wave with the tangential discontinuity, The flow 



contained within the region bounded b) the weak wave, tllr ?;l,ii:li circit JICJ r.itt.j Ilic 
interface , has constant parameters determined 1)) the relations a! the wtak w‘l~e, I iii 

forni of the interface within this region is represented, in ;1c00rti:incf wilij I:‘# j, 11) ji’l 

inclined straight line which merges smoothly at the point ~1: 1. wit11 tile for:1. +IIf 

the interface obtained for n: --: 1. 
3. Gas flow outside the diffraction region. We determine the gas flow in zones 

adjacent to the region of diffraction using the functional-invariant method of Smirnov 

and Sobolev [6 1. 
The perturbed region ahead of the shock wave is bounded by the bow Mach 

wave emerging from the point 2 = 1; -’ at the angle JI ;rr(’ ‘III X: to the unper- 

turbed tangential discontinuity, and k := a,, i <is. Passing in (1.2 1 first to the self- 

similar variables z -2 X i (a”~). ~4 2 Y ,’ (cL,,~) and then to the polar coordinates, and 

applying the transformations 

IL -= arccos r-l, r > 1 (3.1) 

we obtain the wave equation 
0 

P#l - PRU 1 = 0, I-‘) --f 17 ; (a,‘R,) (3.2 1 

The condition that the vertical velocity components of the gas and the liquid 
are equal at the interface is obtained, with the help of the linearized equation of mo - 
tion (the velocity z’ is known from (2.6) >, in the form 

/‘II (1., (I) = PY (I@ (3.3) 

The characteristics of (3.2) touch the Mach circle I’ = 1 since the pertur - 
bations cannot propagate upstream, the solution of the problem (3.2) ,(3.3 ) has the form 

:‘.I I% 

fi, 7; \ I.’ (A xc’ s) Sec2 sds. 1’0 I= arc co5 /I (3.4 ) 
I\0 

The flow is irrotational in the region under consideration, therefore the equa - 
tions determining the vertical component of the velocity u” satisfies an equation 
analogous to (3.2 > . The condition that the vertical components of the gas and the li - 
quid velocities are equal at the interface enables us to determine Y’ over the whole 

region of perturbed flow 

u3 = 1u (, iir 

cos 0 - I/r2 - 1 sin 0 > ’ 
v%-, L (3.5 1 

‘h 

Using the linearized equation of motion written in polar coordinates, we can 

find the horizontal velocity component ( r (0) is the equation of the bow Mach wave) 

,’ 

u” = (,?I I i 
;iS tls 

0’1) 
COJ 0 - Jfs2 - 1 sin 0 (co5 8 - v/s2 -- 1 sin 8) 1/s’l~- 1 (3.6) 

r (0) := k-l CDS cl0 set (0 - po), u0 3 u0 / a, 

When the flow behind the shock wave is supersonic, the comer point of the 
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wall lies outside the diffraction region and an additional region of perturbed motion 
exists bounded by the tangential discontinuity, the characteristic emerging from the 
comer point of the wall and an arc of the Mach circle the center of which moves at the 
velocity I’, . Passing to the self-similar coordinates 

x: = (X - l’,Q ' (all), y = Y i (qt) (3.7 ) 

and application of the transformation (3.1) transforms (1.2) into (3.2 > , This, together 
with the boundary condition 

PR (r, n) = F’f” (Al, - r), p + p / (a,“X,), ill, = Ii, i a, 

makes possible the determination of the pressure 

:A-e 

P= \fY set s f- -11,) secss ds, cc1 = arc cos A& (3.8 1 

j&ii 

4. Formulation of the boundary condition in the diffraction regfon. The dif - 
fraction region in the gas is bounded by the shock wave, the Mach circle arc, and by 

the tangential discontinuity at Al, >> 1 , or by the solid wall and the tangential dis- 
continuity at Ml < 1 . 

When iW1 ( 1 , a zone of nonlinear flow exists near the corner of the wall. 
The zone is generated by the departure of the interface from the wall corner and can be 

replaced be the action of a dipole, In mathematical terms it means that the second 
derivative of the boundary has two delta functions. These delta functions have finite 

densities of opposing signs 

-ttg PS (z + ,I~,) i- (tg P + 0 (c))6 (x+ Ml -t 0 (E)) 

and trrey define, as t: -+ 0 , a dipole with momentum density of Etgp C7l.h 
this case the boundary condition at the rigid wall and on the tangential discontinuity 

will have the form 

p!, (x, 0) = 6 (1 - Iv,)& tg PM,6’ (X + M,) - (4.1) 

[6 (1 - M,) 6 (x - x1) + 6 (M, - 1)l sap (x + MI) 

( x1 is the abscissa of the point of intersection of the interface with the inclined wall) 
The boundary condition at the arc of the Mach circle {r = 1, 0, < 0 < n} 

is obtained from (3.8 ) with the help of the formula for changing the variablein the delta 
function derivative [8] ( y is the ratio of specific heats) 

&I (1, 0) = 6 (M, - l)[Y,6’ (Cl - 0,) + Y$ (e - (3,) - 

6 (0 - 0,) se2 Of” (set 8 -t MI)1 

8, = arc tg (m,m-l), 0, = n - pl, m, = v/1 -m2, M=V/ao 

m= v- z-(l-yy)w E tg p”r, M,” - 2 
2y~l”$_l_-y ’ VI= M,“-1 ’ v2 = l/M1”__l Vl 

where, as in (4.1) , the zone of nonlinear flow is replaced by the action of a dipole. 

The boundary condition at the shock wave {x = m, 0 ( y ( m,) has the form 
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m12P, + fmBy-l - (m + 4YlP, = 6 fY0 - Y)F (Y) 
F (y) = (Cy + Ey-l)p,” + (By + Gy-l)vxo - A-‘my&,” (4.2) 

and the right-hand side of (4.2) is obtained from (3.4) and (3.5 1. 

PliO = Iy + Mkn(y)l(W + hZy2)K(y), n (y) = 1/M” - 1 + Py’L 

v,” = In (y)~~Z - 3i2y2) + A!&/ (M2 - 2 - ?L2y)f K (y) 
0 

V?I = i2Mhyn (y) + h2y2 + &if2 (pcTiq_t- I)1 IT (y) 

5. Raductiar to a boundary value problem for the upper halfmplane. Passage 
to the self-similar coordinates (3.7) followed by a change to polar coordinates and 
application of the transformation (2.1) , converts the equation (1.2 > into a Laplace 
equation in the 5 -plane _ The diffraction region has a corr~pond~g curvilinear 
triangle bounded by the arc of the circle (2~ cos 0 = m (1 + fi”), 
of radius m,m-’ 

0 ( 6 ( 0,) 
with the center at the point m-r, 

1, 8, < 8 < n} 
the arc of the circle {p = 

and the segment (-1 < E < (1 - m,)m-l, q = 0} of 
the real axis. 

The boundary condition for the normal and tangential components of the press- 
ure derivatives has the form ( n denotes the inward normal > 

W, -I- bp, = c 

a = 1, b = b (0), c = F, (0), 0<0<8, 

a=O, b=1, c = J’, (e), @,<0<n 

a = 1, b = 0, c = F, (t), --I < E < (1 - ml)m-’ 
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Let us map the region bounded by the curvilinear triangle on the 
onto the upper half-plane of the plane 0 = z + io 

j -plane 

We introduce the function I? ( o) = p0 i ipT regular in the upper half-plane. 
This yields the following Hilbert problem in the class of generalized functions [9,10 ] : 

[6 (1 - 9) + 6 (T - 1) 1/T- 1Jp0+~[6(-T--_)-6(z-~) x 

(NT - L)lp, = c (4, -cxJ<T<oo 

c(z) =S(--z.-- 1):1 (z) + 6 (1 - TZ)C, (a) - 6 (z - 1) c3 (z) 

Et (z) == 6 (At, - 1) [VP p - 21) + %S (7 - %)I - 

6 (M, - 1) 6 lz - z,) A (z) 

Vh = fq” - 1 (C Tl + Jf/zl” - 1 + 

V--f-_ -2m)-$ 

Yg = I/a (1 - 28’2) (l/T + mL~/l+r,-rn~l-TZz) $- 

SuMitution III* (w) = 1/X1 r(0) (I/w”1 =1/9-l 

with w = z > I), I’,+ ( QJ) = pa1 + ipTt enables us to pass to the Hilbert problem 
with continuous coefficients 

6 (z - 1) 1/T -1p,l+(Nz-L)p,l=d(4, --00<7<= 

d (x) = 6 (1 - 9) 1/i - 3 cs (15) + 1/x” - 1 fe (z - 1) c3 w - 

I?(-T- i)(NT - L) Cl (T)l 

The corresponding Riemann problem has the form [ll , 121 

PI+ (a) = G (T) 1’,- (z) + g (a), ITI* (a) = rl- (?S), --DC <z<.m 

G(z) = 
Na-L-ii6(z---_) VT---i 
NT--L/-ii6<t--f) VT--i 

g(r) = &_ 
i2d (t) 

t,+i6(T-~)~T--l 
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lie can neglect 2), (5 1) appearing in the numerator and denominator of 

the expression for G ( r) , provided that we represent (G CT) in the form of :t ratiil 
of the boundary values of the canonical functions of the homogeneous proijlem % i, I 1 
/ Z- (T) in the upper regular n+ snd lower /I -- llalf-plane where 

-- 
since we have r/‘-F=1 j, i r/ 1 -- a, 01 -: T ,: 1 when (0 n k . The 

regular character of the canonical functiocs Z-k (0)) in 11 i- follows from the fact_ 

that the denomimator of % f ( (11) does not vanish. The final solueion has the form 

Here CO is a real constant determined from the condition of orthogonality of the 

perturbed shock wavefront J: z m 1- E $ (y) to the tangential discontinuity 

Y = ef (Z -I- .\f,) at the point of their intersection. 

The pressure 

p ~; Ill1 J 1’ ( 0) dw, p ( ‘x3) = 0 

has a pole at each point of action of the dipole, and a logarithmic singularity 
at the point of intersection of, the unperturbed shock wavefront with the unper - 

turbed tangential discontinuity. 
The function I/I (y) - can be determined from the relation at the shock wave 

PI:’ (y) --V (y) ~-= ZJ (y), II, (ml) -=O, 41 (J/) =T y 5 s-zti(s) CLS 
lrl, 

H (y) = ‘U-1 ( rnC’6 (Y(] -- y)[EJP (y) /- cu- (y)l - RI, (y)} 

When 1. -< a2 , the function 11 (y) has a logarithmic singularity at the 

point y == () , and so has ‘I> (!I) * The singularity vanishes when V I:-? n 2 . 

Since [[ (111,) ~zY (j. the condition that 21) (!I) is smooth at the point _!/ _ no,, holds. 
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