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A linear formulation is used to study irregular interaction of a moving shock
wave with a surface of discontinuity separating a gas from  a compressible
liquid occupying a part of the lower half-space bounded by a rectilinear in-
clined wall, The problem of interaction in the case when the shock wave in
a gas overtakes weak perturbations in the liquid and the flow behind the shock
wave is subsonic, was studied in [1].

1, Formulation of the problem, The front of a plane shock wave moves along
a smooth wall at a constant velocity V' and emerges, at the instant ¢ = 0, on the
free surface of a compressible liquid. We investigate the flow in the gas, and in the
liquid at ¢ > 0. The problem is self-similar and is studied in the linear formulation
since the shock wave front moves at a high velocity and the parameter € = R/ 1,
( R, is the gas density behind the shock wave and R, is the density of the liquid)
is small, The problem is divided into three distinct problems which are solved in the
following order.,

Fig, 1

(2) The problem of motion or liquid acted upon by an unperturbed pressure P
behind the shock wave in the gas, Solution of this problem enables us to determine the
form of the perturbed tangential discontinuity where y — ef (x)

z=X/(ax), y=7Y/(ay) (1. 1)
are the self-similar coordinates (see Fig, 1),

{b) When the weak perturbations in the liquid propagate faster than the shock
wave in the gas, a region of perturbed flow exists ahead of the shock wave. The para-
meters of this flow are determined from the perturbations in the tangential discontinuity
and in the linear formulation are independent of the gas flow behind the shock wave.

(c) Theflow in the diffraction region is determined from the known form of the
tangential discontinuity and from the gas flow parameters in the neighborhood of the
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diffraction region,
In each of the above regions the pressure perturbation satisfies the wave equation

Pxx + Pyy — @%py =0 (1=0,1,2) (1.2)

and, in the coordinate system moving at the velocity V; of flow behind the shock
wave, &; denotes the speed of sound and { indicates the region of flow(seeFig, 1).

Since the number of parameters is large and the problems listed above are sol -
ved in a strict sequence, the index accompanying the dimensionless parameters is, in
general, omitted.

2, Solution of the problem in the lquid, When V < q, ,the region of per-
turbed flow in the liquid is bounded by the inclined wall, the arc of the Machcircle with
the center at the comer point of the wall, and by the tangential discontinuity. Passing
first to the self-similar coordinates {1, 1) and then to the polar coordinates and applying
the Chaplygin transformations

2p

r:::my, Gzarctg%, r:Vxlﬂ+y2

(2.1)

we transform Eq, (1,2) into a Laplace equation in the region{p << 1, —p<C 0 < 0}.
After this we can write the pressure as the real part of the analytic function

D) =p-+ip, L=E&+in=pexpid (2.2)

where ¢  is a harmonic function conjugate to p.
Just as in the theory of conic flows [2], we can obtain the following expression
for the complex velocity W = u -+ iv:

1y i ;
vv:75§d®+€dd), PRI S (2.3)

221 fty

(here and henceforth the arrows indicate an equality to within the notation used), Then
the boundary conditions for the function @ () have the form

__{ﬁ(go—“g)[), 08t =0, _ ¢ _yr—m
o 0, —B<O<C0, p=1, P o

¢ =0, 0<p<<l, 0=—8, p—pla’R,
where ¥  denotes a unit Heaviside function and %, = V / @, is the point at which
the pressure becomes discontinuous.,

Mapping conformally the sector {p << 1, —p <C 0 < 0} of the [ -plane
onto the upper half of the plane ¢ = v+ io, & =/ P

/1 FB2 2.4
@21\’;:?;), (" =t" when{=£>0) 4

and carrying out the substitution @ (w) = V1i—a® (o) (V1 — @=1 when
® = 0), we obtain the Dirichlet problem for the function
_ 9d =1 (v — )l P —alTl o, T ::(1"“&30' 2
b= _|/---—~—1~T ’ ’ 0 1“’!*5_,0“)
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Writing a solution of this problem in the form of the Schwartz integral [3], we
obtain the analytic function

O :_f_lz_l Vi—o—V1—r1, _ o
(0) p nVi—w—l—Vl—ru (Re® (0) =0 for: o =1 1) (2.5)

The distribution of the vertical velocity component at the interface we find from
) R
Vi=s 2F
U“—‘g—s——d(l?, T=T1Ee (2.6)

x
o P WEarey—u sz VE]
T Ve e+ d S VE
The form of the tangential discontinuity is determined from the solution of the

differential equation

zf' () — f(x) = —v(x), f(1) =0 (2.7)

which is obtained from the condition of kinematic compatibility at the interface, From
(2.7) it follows that f (1) =0, i.e. the Mach circle wave does not effect the
smoothness of the interface at the point z = 1.

In a number of cases the distribution of the vertical velocity component at the inter-
face and the form of the tangential discontinuity canboth be obtained in explicitform .,
For example,for z,<(1and B = ;m /4 wehave

P z
V= [Zarctg —_—

Zy Vi —z?
T 72l [ — %] —n]
V1 Fot M (x4 Vl — V1 —"Iogz)z

_2p s 2omi ) 1a VTR
f(x) -E:arctg VT T x p +

ﬂ?—[(x — ag) In|a?— z¢f| -+ 2Mn (1) T— 24 V1 —z?2) —

VTI—zi+VIi—ad@r+ 1 —zde?) | n)
1+V1—x021/1 — z?

7

In what follows, we shall express the solution of the problem in the gas in terms
of the second derivative of the function defining the form of the tangential discontinuity
and given in explicit form for all values of the parameters f§ and z, by (2.6)and
(2,7)., When z = x,<C 1 , the function v will have a logarithmic singularity
and f(x) will have a comer point just as in the case of an incompressible fluid ,while
at 1z, >1 the singularity will vanish. Study of the flow of an incompressible fluid
near the point of pressure discontinuity, using a nonlinear formulation, shows that th~
perturbed interface has a spiral-like form [4,5]. The interface always departs from
the corner point of the wall ,

When V > a, , a weak wave tangent to the Mach circle arc emerges from
the point of intersection of the shock wave with the tangential discontinuity . The flow

2z 1In
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contained within the region bounded by the weak wave, the Hlach circle are and U

interface , has constant parameters determined by the relations at the weak wave, Tihc
form of the interface within this region is represented, in accordance witl {1, j, by au
inclined straight line which merges smoothly at the point & 1 with the form of
the interface obtained for z < 1.

3, Gas flow outside the diffraction region, We determine the gas flow in zones
adjacent to the region of diffraction using the functional-invariant method of Smirnov
and Sobolev [6].

The perturbed region ahead of the shock wave is bounded by the bow Mach
wave emerging from the point z = A°' at the angle =« arc sin k  to the unper-
turbed tangential discontinuity, and % == a,/ G,. Passing in (1,2) first to the self-
similar variables z = X / (aql). y = Y ./ (a,l) and then to the polar coordinates, and
applying the transformations

W = arccos r-t, r>1 3.1)

we obtain the wave equation

Dop — pu” =0, pl—p° () Ry) 3.2

The condition that the vertical velocity components of the gas and the liquid
are equal at the interface is obtained, with the help of the linearized equatjon of mo-
tion (the velocity v is known from (2,6) ), in the form

P (ry 0) = 1%’ (kr) (3.3)

The characteristics of (3. 2) touch the Mach circle » = 1 since the pertur-
bations cannot propagate upstream, the solution of the problem (3, 2),(3. 3 ) has the form
P
po o= \ v (hsec sysectsds, P = arccos k (3.4)

1%

The flow is irrotational in the region under consideration, therefore the equa -
tions determining the vertical component of the velocity ©° satisfies an equation
analogous to (3,2). The condition that the vertical components of the gas and the 1i-
quid velocities are equal at the interface enables us to determine t° over the whole
region of perturbed flow

00 = p ( kr ) . v (3.5)

cos® —Vrr—1 sin @ e

Using the linearized equation of motion written in polar coordinates, we can
find the horizontal velocity component ( r (8) is the equation of the bow Mach wave)

o o, s dy
u = v ——
5 < cosh— ¥ s2—1 sin 9 >(cosB~' Vst —1sin®)Vs—1 (3.6)

r(0) == k7' cos pgsec (8 — uo), u®—u’/a,

When the flow behind the shock wave is supersonic, the comer point of the
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wall lies outside the diffraction region and an additional region of perturbed motion
exists bounded by the tangential discontinuity, the characteristic emerging from the
comer point of the wall and an arc of the Mach circle the center of which moves at the
velocity V. Passing to the self-similar coordinates

= (XN — Vi) (a), y =Y /(ay) (3.7

and application of the transformation (3.1) transforms (1, 2) into (3,2). This, together
with the boundary condition

pe(r, o)y =r%"(M;, —r), p—>p /(a?R), M, =V,/a
makes possible the determination of the pressure
-

p = S /" (secs + Myysec3sds, p, = arccos M

Pi-n

(3.8)

4, Formulation of the boundary conditions in the diffraction region, The dif-~
fraction region in the gas is bounded by the shock wave, the Mach circle arc, and by
the tangential discontinuity at Af, -1 , or by the solid wall and the tangential dis-
continuity at M; << 1.

When M, <C 1 , a zone of nonlinear flow exists near the cormer of the wall,
The zone is generated by the departure of the interface from the wall corner and can be
replaced be the action of a dipole, In mathematical terms it means that the second
derivative of the boundary has two delta functions, These delta functions have finite
densities of opposing signs

—tg Bd (z + M) + (tg P + O (e)d (z + My + O (e))

and tney define, as & -— 0, a dipole with momentum density of & tgf [7]. In
this case the boundary condition at the rigid wall and on the tangential discontinuity
will have the form

py(z, 0) = (1 — Me tg BM,d' (z + My) — (4.1)
01— M)d(z — z) + (M, — 1) 2% (x + M)
( =z, isthe abscissa of the point of intersection of the interface with the inclined wall)
The boundary condition at the arc of the Mach circle {r =1, 8; << 6 < m}

is obtained from (3, 8) with the help of the formula for changing the variablein the delta
function derivative [8] ( 7 1is the ratio of specific heats)

po (1, 8) = & (M; — 1)v,8" (0 — 0,) + vs0 (0 — 0,) —
9 (0 — 0,) sec® Of (sec 6 + M,)]
0, = arc tg (mym~1), 0, =m — p;, my = V1—m? M=Vlia,

— (1 — 2 tg M M2
m=/ IS0, e, D

— = . = e—
29M2 41—y ! Mpz—1 z VMzE—1 !

where, as in(4,1), the zone of nonlinear flow is replaced by the action of a dipole,
The boundary condition at the shock wave {z = m, 0 << y << m,} has the form
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my?py -+ (mBy=t — (m + A)ylp, = ¥ (yo — VF (v)
F(y) = (Cy + Ey™Mpy° + (Dy + Gy’ — M 'myd,° (4.2)

and the right-hand side of (4, 2) is obtained from (3,4) and (3.5).
P = ly + MEn(@)M* + M)K(y), n(y) = VI —1 + By
v = [n (YU M? — AM2y%) + Mhy (M? — 2 — M)l K (y)
v,° = [2MAyn (y) -+ My* + M2 (Y D2 £ %% — D] K ()

_ A [ k(M2 R
KW = s L=t
M2 oyt M2 1 SRR et 0 Y
A= B="35 monmw—z> (=4-"7M
_y+1 M
D= 2 1 M2

n

E=(M?+1—mhM)=, G=(mh—2M)=5,

A 1 — kM A 4
JO-_ k}“v‘}\‘——"—z 7 y ay

5. Reduction to a boundary value problem for the upper half«plane, Passage
to the self-similar coordinates (3, 7) followed by a change to polar coordinates and
application of the transformation (2, 1), converts the equation (1, 2) into a Laplace
equation in the  { -plane, The diffraction region has a corresponding curvilinear
triangle bounded by the arc of the circle {2p cos 0 = m (1 + p%), 0 << 6 < 6}
of radius mym~"  with the center at the point m™!, the arc of the circle {p =

1, 6, <0<z} andthe segment {—1 <<E{<< (1 —m)m, 4 =0} of
the real axis,

The boundary condition for the normal and tangential components of the press~
ure derivatives has the form { n  denotes the inward normal )

ap, -+ bp, = ¢

a=1, b==0(0), c = F (B), 0<<b<8

a=10, b=1, c=F,(0), &, <8<~

a=1, b=0, ¢=F;(), —1<E<<U —mm?

D Fmig8), b(0) =

m

Betgh—mAtg 0
Vi—micec?
Fy(8) = 9 (My — 1)Iv,87 (8 — 8,) + .8 (8 — 6,) —
¢ (0 — 0,) sec® 6f” (sec 6 + M,)

I3

Fy(8) =8 (1 — M) {v35' (E—E2) + vid (E— &) —

[0 (1 — M) O (E— &) + 0 (M, — 1)] Si;)d gl ff&z )]

Fy(6) = 9 (8 — 6)

, Y < 1— V11— 22 MMz 1
0y = arctg »-;ni‘-, glz__]/;_l..,._.l___.’ By = v Ml
RAGS ¢

__g2tgB £t o iy
Vo= i gR 10 T eEBh gy
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Let us map the region bounded by the curvilinear triangle on the [ -plane
onto the upper half-plane of the plane ® == T - i0

=t (i — ), 0= (0 +o5), G=mtim

We introduce the function I' (@) = p, + ip: regular in the upper half-plane,
This yields the following Hilbert problem in the class of generalized functions {9,107 :

Bt —)+0c—DYVr1—1p,+WB(—1—1)—0(t—1) X
(Nt — L)]pt = ¢ (1), — o0 T 0
c(M) =0 (=1 — 1) (M) + 81 — ey (v) — (v — 1) ¢5(7)
e () =My — ) [ve8 (T — 1) +veb (T — )] —
VM — ) B —T)AD)
Va1 —rrVe—1+V—-1—Ve&—1—2m
ey (T) = O (1 — M) [ved' (T — T3) + Vad (T — T2)] —
m S0 —M)Sr—t) 2O =)
V2 VIi—=2 (V2m —V1—7)

€3 (T) = ‘;224+1) Vvt —yVr—-1 F(mll/_:{%)
A1) = ¢* (V) [ (g (v) + M), g(’\:):k}/i_—l~

VZ—mVi—=
__ m!AF mB . 2M2
N L= Vome =1 (1 —m)M?
o 2M3 . m—x; \2 _om? gt
172“1_(1+mM,)“"’ T3—1—“2(1-—mx1> L By Jg vy

’\?5:1/1:12—“1(]/‘__‘1:1—{—]/’112”“1 -‘I"
Vot —Vur—1 »—Zm)—v‘—

VI D V2 m Vit —my T =

Substitution 1,7 () =Va) —1 T(e) (V& -—1=V12—1
with @ = t > 1), ['}* (@) = ps* + ip-' enables us to pass to the Hilbert problem
with continuous coefficients

SGr—1D Vimlpl+Wrt—Lpl=4d(1), —o<r<oo
d(®) =01 —) VI —ve, () +VE -1 (t—1e(v) —

B (— 1t — )Nt — L) ¢, (7)]

The corresponding Riemann problem has the form [11, 12]
TY@® =6@Nh @+e@, I (@) =70, —«<<r
_ Nt—L—id(r—1) Vi—1
Gr) = Nt—L+idx—1) Vi1
i2d (1)
Nt L+ it (t—1) V11

g(t) =
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We canneglect U {tv ~- 1) appearing in the numerator and denominator of
the expression for (/ (1) , provided that we represent ( (t)  in the form of a ratio
of the boundary values of the canonical functions of the homogeneous problen: 7" {1}
{ Z~ (%) inthe upper regular ¥ andlower /)~ half-plane where
{ R _—

p _ T T forw -t D)
(( ’) Nw L+i)w 1 (VH ! l/ ! I for r- 2

since we have l/ @ — 1 - +- Vi___ T, =101 when = D . The
regular character of the canonical functions Z+* (w) in D* follows from the fact
that thedenomimator of 7% (®) does not vanish, The final solution has the form

, 2t () l d V < (Vs L Vi)
) et 22 W-—1 ~
(o) Y ol e O ) xow -
vwlVnd Uz, L Vo,
Ty - "
! .
\' B L VI-—9A() iy .
hd VoosooVe 1 l/ s Vst o1 - 2m oo l
TS D A Il ) A e A ,
]r(lA ‘”l)t Vo g (Vs Ly{s ) ’ .

8 AR A e A
(N1, — Ly (t. ) o
L

iy (Vs L VI 9AW ds |
VZ 5 (Ns  LYV2Zm V1 ) R l ‘

e S L (0 V) P
1

Here (o is a real constant determined from the condition of orthogonality of the

perturbed shock wavefront = = m -+ € (y) to the tangential discontinuity
y = ef (x - M) at the point of their intersection,
The pressure

=Im | ' (0)do, p()=0

has a pole at each point of action of the dipole, and a logarithmic singularity
at the point of intersection of the unperturbed shock wavefront with the unper -

turbed tangential discontinuity,
The function  (y) - can be determined from the relation at the shock wave

ywm~¢@fﬁm,wmmowu~ﬂ~ﬂ<

in,
H (y) = M m " (yo — ylEP® (y) + Gu” (y)] — Bp ()}
when V < g, , the function H (y) has a logarithmic singularity at the
point y = () , andsohas 1 (y) . The singularity vanishes when V = a, .
Since H (m,) = (), the condition that 1 (y) is smooth at the point.y = m,, holds.
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